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Abstract

At the molecular level, processes in physics and biology are intrinsically random. Quite often they can be described as
random series of elementary events, Poisson trains, whose event generation rate is a function of an input driving parameter.
We analyze the transduction of weak signals by such trains in the presence of additive input noise in terms of transfer
coefficient and output signal-to-noise ratio. We show that the noise-facilitated signal transduction, stochastic resonance (SR),
is an inherent property of parameter-dependent Poisson trains with a nonlinear relationship between the event generation
rate, r(V(t)), and the driving parameter, V(7). We obtain a sufficient condition for the SR onset that shows that for the
input noise with a sufficiently broad bandwidth, SR can be observed in a wide variety of such systems. If this relationship is
represented by r(V(t)) l+z? r.V"(t), then the system is capable of SR if 6r3/ri —r2 > 0 Addition of small noise with
a broad bandwidth to the system input increases the output signal quality. To highlight the mechanism of noise-facilitated
signal transduction in such systems, we also analyze the “linearizing” effect of the additive noise on signal transduction in
rate-modulated Poisson series. (© 1998 Elsevier Science B.V.
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1. Introduction

Having been demonstrated in an increasing number of nonlinear systems in physics, chemistry, and biology,
noise-facilitated signal transduction — stochastic resonance (SR) — has enjoyed renewed interest [1-3]. While
altogether different in their nature, many of these systems share a common feature: from the excitation of
electrons across a barrier in a back-biased solid-state diode, to ion channels of biological membranes, to
neuronal spikes of nerve cells, their random activity can be described as a spontaneous succession of nearly
uniform events whose generation rate is a function of some external variable - a driving parameter. Analysis
of the temporal sequence of action potentials obtained from a nerve fibre in terms of a time-dependent or
“inhomogeneous” Poisson process [4] has proved to be extremely fruitful [5].

If events are statistically independent and the event generation rate r is constant, the probability of observing
exactly M events during time interval T is given by Poisson’s law [6],
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(M

p(M,t) = T

exp(—rT),

Such time series are often referred to as stationary Poisson trains or stationary Poisson processes [7].

It was shown recently [8,9] that a Poisson train with an exponential dependence of event generation rate on
input parameter shows all the basic features of stochastic resonance [ 1-3]. These include noise-facilitated signal
transfer, noise-induced increase in the output signal quality, and the existence of a particular noise amplitude
that optimizes signal transduction. Specifically, the Poisson train of identical events, e.g. current pulses, with
the generation rate r = r(V(t)) obeying

r(V(1)) =r(0) exp(V(1)) (1)

was considered. Such a process transduces a small signal in the driving parameter, e.g. input voltage V(¢), with
a signal-to-noise ratio (SNR) that can be optimized by the addition of input noise. If the input voltage is a
sum of a small slow sine-wave signal of amplitude Vs and zero-mean Gaussian noise Vy(t) with a Lorentzian
‘spectrum of bandwidth f,

V(t) = Vssin(2m fst) + Vn (1), 2
then the output SNR at the signal frequency fs < f,. is [8,9]

_ ((V5)2r(0)/2Af4) exp(a?/2)
T 24 (2r(0) /7 fe) exp(02/2) S0 (a2 /ntn)

Here, o is the r.m.s. noise amplitude and A f, is the measuring device spectral resolution. The SNR described
by Eq. (3) shows noise-induced increase if the condition f. > 2r(0)/# holds (that is, the input noise has
a sufficiently wide spectrum). The noise amplitude corresponding to an SNR maximum can be estimated
by [9,10]

SNR (3)

7fe

2r(0) )

Oopt = 4/1In

For input noise with a sharp spectral cutoff at frequency f., the factor 77/2 must be omitted.

In this Letter we address different relationships between event generation rate and driving parameter. The
main question we ask is: what are the other types of relationship that lead to SR. The answer we obtain is
rather unexpected. The sharp exponential dependence is not necessary. A wide class of nonlinear relationships is
sufficient for the SR onset if the input noise bandwidth is high enough. Given the universality of time-dependent
random series of events in the description of various phenomena, this finding suggests that the noise-facilitated
signal transduction is a general statistical phenomenon, rather than a specific property of particular systems.

First, we analyze small-signal transduction for a third-power polynomial at finite noise amplitudes. Then we
use the obtained results to study the case of small noise intensities for an arbitrary dependence; we derive a
condition for the onset of stochastic resonance. Second, to highlight the mechanisms of noise-facilitated signal
transduction, we consider cases where the event generation rate is an even or an odd power of input voltage.
We show that in the case of odd powers (greater than one) the system response can be “linearized” by the
addition of input noise. In the appendix we present a simplified version of calculations based on an adiabatic
approach with separate averaging over high and low frequencies.

Our approach is quite different from previous theories of stochastic resonance that deal with dynamical
systems [11,12] or threshold devices [13,14]. We explore a nondynamical system (it could, for example,
represent statistics of raindrops that are collected by a gadget with varying aperture). It also shows a threshold-
free response [8,9]. The work that can be considered as a predecessor of our study is that by Weisenfeld et
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Fig. 1. Hlustration of a time-dependent Poisson train (Output) with a linear rate dependence on a driving parameter (Input). The input
signal (drawn here as a pure sine-wave) is transduced to the output and is contaminated by noise of random pulse generation (Filtered
Oulpws ).
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al. [15]. These authors examined “a modified version of the shot effect” where the event rate is modulated by
a periodic signal. Noise strength defines the average rate by a Kramers-type formula for the threshold-crossings
frequency [15] — the feature that makes their model to differ substantially from ours. For example, it cannot
be used to account for the mixing between different spectral components of the input noise and to analyze
several other effects described in the present Letter. Very recently, a new approach for the analysis of SR in
intrinsically noisy systems was introduced [16]. It permits one to calculate signal-to-noise ratio for a variety of
nondynamical systems; however, for an arbitrary dependence of output deterministic response and output noise
on input voltage the approach is limited to small input signal and low input noise only [16].

2. Third-power polynomial dependence and a sufficient condition for stochastic resonance

Though the exponential relationship between the process rate and the driving parameter analyzed previ-
ously [8,9] seems to be the most important one for applications in physics and biology, other cases can also
be of practical interest. Good examples are readily found in the field of auditory reception [17-19], where this
relationship is often called “spike-generator function” [20]. The exponential spike-generation function is quite
useful for modeling of auditory-nerve fiber activity [20], but it is long known that more accurate considerations
must include saturation effects [213.

To analyze the generality of SR in time-dependent Poisson trains, we consider a time-dependent series of
identical pulses of area (charge per pulse, in the case of electric current) Q with the pulse generation rate
depending asbitrarily on input voltage V{¢}. A cartoon illustrating sigral transfer in this madel is shown in
Fig. 1. We first analyze the following relationship between the rate and the voltage,

3
r(V(1)) =r(0) (1 +Zrnv"(t)), (5)
1

where V(t) is given by Eq. (2). In the vicinity of the signal frequency, fs, which is much smaller than all other
characteristic frequencies or inverse times in this problem, the power spectral density of this doubly stochastic
process [7,22] can be written in the form
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o0

S1(f) =20%r(V(1))) +4Q? / (r(V(£))r(V(t +1)))cos(2m fr) dr. (6)

0

The first term is easily calculated because only even powers of V(t) will contribute to the average generation
rate, so that {(r(V(t))) = 1 + r,0. Using the Gaussian properties of the noise and keeping terms of Eq. (5)
that are zero or first-order in Vs only, the correlator under the integral sign is

(r(V(D))r(V(t + 1)) = K2o?p(7) + 2r30* 0> (1) + 6r3a°p* (1) + K*(V§/2) cos(2m fs7) .

Here, constant (7-independent) terms were omitted as not contributing to the spectral density around signal
frequency; terms containing products of the type V2p"(7) cos(2a fs) were also neglected; they represent
continuous spectra that are small compared to other continuous spectral components due to Vs < o. For
convenience we use two abbreviations,

K=r+ 3r;0?, (7)

and the normalized noise autocorrelation function,

p(7) =exp(—7/7) . (8)

where 7. is the noise correlation time.
For Q =1, Eq. (6) can now be written

S;(f) = 2r(0) (1 + r20?) + 47.(r(0))%0?(K* + r3a” + 2r30*) + (r(0)K)*(V5/2)8(f — fs) . (9)

Here, the first term represents the spectral density of a stationary (time-independent Poisson train) with the
rate boosted to a higher (if ry is positive) value by the input noise. The second term accounts for the input
noise transduced to the system output. The last term containing a J-function shows signal transfer that depends
on input noise intensity as (r(0)X )2. This clarifies the meaning of K: it represents the system’s small-signal
(linear) transfer at »(0) = 1. It also makes clear that the second term describing noise transfer to the output,
in addition to direct amplification of noise by (r(0)K )2, also includes contributions from the mixing of noise
components at different frequencies.
The output SNR is the ratio of the last term to the sum of the first two,

r(0)K2V2/2A f4
2(1 + ra0?) + 2(r(0) /mf.) o2(K? + r3o? + 2ric*) ’

SNR(o) = (10)

where f. = 1/277, and the “ideal” delta-function was substituted by the inverse frequency resolution of the
analyzing device, that is, by 1/A fa. At small noise intensities, & — 0, this expression gives a condition for
stochastic resonance onset. If 3SNR (&) /do > 0, small noise intensities improve the output signal quality. It is
easy to show that this condition is equivalent to

7(6r3/ry — r2) fe > rir(0). (11)

From here it follows that to obtain output signal improvement, input noise bandwidth must be sufficiently
wide. Interestingly, at r, = 0, the input noise always increases the output signal SNR. This feature is easy
to understand, because 7, = O corresponds to zero small-signal transfer (see Egs. (5) and (7)). In this case,
without input noise there is no linear response. Addition of noise “linearizes” the system making the small-signal
transfer coefficient finite thus increasing SNR from zero to the value given by Eq. (10).
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Eq. (11) provides a sufficient condition for stochastic resonance in systems with various relations between
event generation rate and driving parameter. For example, by substituting coefficients for the exponential
relationship, that is, r, = 1/n!, we have

fe> 2"(0)/77',

reported earlier [8,9].
Most importantly, Eq. (11) implies that noise-facilitated signal transduction, SR, is an inherent property of
of a wide class of nonlinear time-dependent random trains of events.

3. Linearizing odd power-law dependence by input noise

To understand better the noise facilitated signal transduction in time-dependent Poisson trains, consider the
following, simplified relation between event generation rate and the driving parameter,

r(V(#)) =r(0)(1+aV"(1)), (12)

where n is an integer. Again, we calculate signal transduction and the output SNR using Eq. (6). Assuming
weak signals we keep only terms from Eq. (12) that are zero and first power in Vs, .

r(V()) = r(0) (1 + a(V5(2) + nV,(',_IVs sin(27r fst))) .
For even n, the correlator is now
r(V(e)r(V(E+ 1)) = (r(0))?

n/2 aop 1

2
2.2 2n n! 2 2%
+ (r(0)) %% (-——2,,/2("/2)!) (1+ ((n/2)1) )§k=lﬁ——2k!———-—((n/2_l)!)2p (1)

(n— 1)!)2 L g

2.2 2 n—2v_5g -
+(r(0))’n’a’o? 5 (2(,,_1)/2 c (2k—1)! ((n2—kyn2”?

=17y cos(2m fsT) .

The only term of this expression that contains Vg is the last one. It gives the following output spectral
components,

(r<o>)2aza2n—2l’sfz"/2 Ak(1+_<ﬁ+_f§>_>[(1+ (f = f5)* )(1+ (f +f5)° )]“
2 ’
k=1

k- D)2 (2k — D)2 (2k— 1)2f2

where A, are numerical coefficients. Analysis of this expression shows that for n even the input signal contributes
only to a broad-band output noise that is small in comparison with other components because of the condition

Vi< 0.
For odd n, the situation is qualitatively different. The correlator can be calculated as described above to give

the following expression for the power spectral density (Q = 1),

Si(f) =2r(0)
2 (D2 o 1 1
k-1 (((n+1)/2=k)ND2 27 f(2k— 1)

+4(r(0))2ao? 1D
2 k=1

1 V_‘g 2. 2.2 n_2(
TGk —)2 T 2 (r(0))2a?n*a?

(n—1)!
20=D72((n—1)/2)!

2
) 8(f—fs).
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Fig. 2. Signal transfer in Poisson trains with power-law relationships between input voltage and pulse generation rate. Zero-mean Gaussian
noise input noise has a “linearizing effect” on signal transfer in the case of odd powers higher than one (n = 3, 5, 7,...) but does not
induce small-signal transfer in the case of even n.

The last term of this expression represents noise-facilitated small-signal transduction. This “linearizing effect”
is demonstrated in Fig. 2 that shows the ratio of output spectral density at signal frequency to the signal’s input
spectral density at r(0)a = 1. The corresponding SNR is the ratio of the last term to the first two in the limit
of low frequencies,

2

v - (n—1)! ?
SNR(er) = [ZAf r(O)a’nc? 2(2("‘”/2((n—1)/2)!) }

n+1)/2 _ -1
O 2 a r)z‘*” 221 1 1
<2+2 vy o kzl: k- (((n+ D2-D2 (Zk-1)) (13)

Analysis of this equation shows that at finite & and odd n > 1, 3SNR (o) /do is positive at o = 0. It means that
addition of small-intensity input noise always increases the output signal quality. But for n = 1, that is, for a
linear system, SNR(&) o 1/(1+0a?a?r(0) /7 f.) is a monotonically decreasing function of noise intensity. As
expected, introduction of noise to the input of a linear system deteriorates output signal. Only for higher odd
n does input noise improve signal transduction. Comparison of output SNR for a linear system and nonlinear
systems corresponding to n =3, 5, and 7 is shown in Fig. 3 for 7. = 1, @ = 1, and r(0) = 10 [8]. It is seen that
the output SNR of nonlinear systems showing stochastic resonance is always smaller than the corresponding
value for the linear system. The noise value optimizing signal transduction depends on both the initial process
rate r(0) and the noise bandwidth f., similarly to that in the case of the exponential dependence (Eq. (4))
studied earlier [9,10]. For example, for n =3,

_ o 27fc
Toot =\ T1a2r(0) -

To conclude, our analysis gives a sufficient condition (Eq. (11)) for noise-induced improvement of output
signal SNR in systems that can be represented by Poisson trains of events with arbitrary dependence of
event generation rate on a driving parameter. It shows that stochastic resonance is an inherent property of
time-dependent Poisson trains with a nonlinear relationship between the pulse generation rate and the driving

parameter.
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Fig. 3. Output signal-to noise ratio (SNR) for Poisson trains with power-law relationships between input voltage and pulse generation
rate. In the case of a linear relationship, input noise only deteriorates output signal. For odd powers higher than one, input noise increases
output SNR. The optimal noise value depends on the ratio between noise bandwidth and initial pulse generation rate (see text).
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Appendix A. Simplified adiabatic approach with separate averaging over fast and slow processes

Consider the case of small noise amplitudes only, o < 1. We are interested in the value of r(V(t)) averaged
over all processes that are faster than the input signal f > fs. It is intuitively clear that in the limit of very
slow signals, fs/f. — 0, and in case of input noise with a “white” low-frequency spectrum, this averaging is
exact. For the second and the third momentum of input voltage, we have

(VA1) )ast = 02 + V2 sin® (2ar f51) (A.1)

and
(V3(£) )ast = 302 Vs sin(2m fst) + V3 sin® (277 fst) (A2)

as the averages of all odd powers of noise signal are zeros. The condition Vs < 1 allows us to ignore all powers
of the signal except for the first one, so that we have

(r() st = r(0) [1 + r20? + (r1 + 3r307) Vssin(2m fst) ] . (A3)

This expression shows that the small input sine-wave signal is transduced to the system output with a noise-
dependent coefficient r(0) (ry + 3r30?) in accordance with Eq. (7) above.

We find the output SNR as a ratio of input signal spectral density, VZ/2A f4, multiplied by the square of
transduction coefficient, to the output noise spectral density. The latter is represented by the sum of two terms.
The first one is a “shot-noise” expected from a Poisson pulse train with the initial rate r(0) boosted by the
factor 1 + r,0? by the input noise (Eq. (A.3), first two terms in brackets) to give 2r(0)(1 + r20?). The
second one is the low-frequency spectral density of input noise, Sni(0) = 202 /m f., multiplied by the square
of transduction coefficient. This procedure gives
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(r(0)K)2VZ/2A fa

SR = 2O (T + 1) + 202w ) (HOVK)?

(A.4)

where r(0) K is a small-signal transduction coefficient with K defined by Eq. (7). This expression differs from
Eq. (10) because, considering small noise amplitudes only, we neglected contributions from mixing of different
noise spectral components. Neglecting terms containing o* and ¢® and solving 3SNR (o) /do > 0, we obtain
Eq. (11). For the case of noise with a sharp frequency offset Sxi(0) = o2/ f... The corresponding condition for
SR onset is now derived from Eq. (11) where f; has to be replaced by 2f./# and is f. > r(0) [8,9].
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